在太陽能逆變器的設計中,常用的IGBT分別為平面型IGBT和溝道型IGBT。在平面型IGBT中,多晶硅柵極是呈“平面”分布或者相對于p+體區是水平分布的。在溝道型IGBT中,多晶硅柵極是以“溝道方式向下”進入p+體區。這種結構有一個優點,就是可以減小通道對電子流的阻力并消除電流擁擠現象,因為此時電子垂直地在通道中流過。在平面型IGBT中,電子以某種角度進入通道,引起電流擁擠,從而增加電子流的阻力。在溝道型IGBT中,電子流的增強使Vce(on)大幅度降低。
除了降低Vce(on)外,通過將IGBT改成更薄的結構可以降低開關能量。結構越薄則空穴-電子復合速度就越快,這降低了IGBT關斷時的拖尾電流。為保持相同的耐擊穿電壓能力,在溝道型IGBT內構造了一個n場阻止層,以便在IGBT上的電壓增大時,阻止電場到達集電極區域。這樣實現的更低的傳導能量和開關能量允許逆變器的尺寸更小,或者相同尺寸逆變器的功率密度更大。
在太陽能發電系統中太陽能電池板需要串聯或并聯工作,太陽能模塊產生的直流電壓在幾百伏的數量級,如600V或1200V。上述最新的IGBT技術使得針對20kHz開關應用的最新一代600V溝道型IGBT得以實現。以IR公司采用全橋拓撲構建的500W直流/交流逆變器演示板為例,通過測量所降低功耗表明,采用新型經優化的溝道型IGBT器件,可使散熱片溫度降低16%。功耗的降低使IGBT的效率比前一代IGBT器件提高了近30%。
一般來說,在直流/交流逆變器系統設計中,選擇IGBT器件的基本準則是提高轉換效率、降低系統散熱片的尺寸、提高相同電路板上的電流密度。目前,市場上多家公司提供用于太陽能逆變器的功率器件,其中,包括IR、英飛凌、ST、飛兆半導體、Vishay、Microsemi、東芝等公司。
除了降低Vce(on)外,通過將IGBT改成更薄的結構可以降低開關能量。結構越薄則空穴-電子復合速度就越快,這降低了IGBT關斷時的拖尾電流。為保持相同的耐擊穿電壓能力,在溝道型IGBT內構造了一個n場阻止層,以便在IGBT上的電壓增大時,阻止電場到達集電極區域。這樣實現的更低的傳導能量和開關能量允許逆變器的尺寸更小,或者相同尺寸逆變器的功率密度更大。
在太陽能發電系統中太陽能電池板需要串聯或并聯工作,太陽能模塊產生的直流電壓在幾百伏的數量級,如600V或1200V。上述最新的IGBT技術使得針對20kHz開關應用的最新一代600V溝道型IGBT得以實現。以IR公司采用全橋拓撲構建的500W直流/交流逆變器演示板為例,通過測量所降低功耗表明,采用新型經優化的溝道型IGBT器件,可使散熱片溫度降低16%。功耗的降低使IGBT的效率比前一代IGBT器件提高了近30%。
一般來說,在直流/交流逆變器系統設計中,選擇IGBT器件的基本準則是提高轉換效率、降低系統散熱片的尺寸、提高相同電路板上的電流密度。目前,市場上多家公司提供用于太陽能逆變器的功率器件,其中,包括IR、英飛凌、ST、飛兆半導體、Vishay、Microsemi、東芝等公司。