據麥姆斯咨詢報道,內布拉斯加大學林肯分校最新的一項研究指出,將DNA尺寸大小的碳帶固定在 氣體傳感器 上可以提高其靈敏度,效果遠優于其它任何現有碳材料。
團隊開發了一種由石墨烯制成的新型納米帶,這是一個由碳原子構成的2D蜂巢。當研究人員將納米帶薄膜集成到氣體 傳感器 的電路中去時,與過去的傳感器,甚至是最佳性能的碳基材料相比,它對分子的響應靈敏度高出了100倍。
內布拉斯加大學林肯分校化學系的副教授Alexander Sinitskii表示,“我們以前也研究過其它碳基材料傳感器,如石墨烯和氧化石墨烯。使用石墨烯納米帶,我們確定可以看到傳感器的響應,但是我們沒有預想到會比過去所看到的更高。”
研究人員在《自然通訊》(Nature Communications)雜志上發表了研究結果,顯示氣體分子可以顯著改變納米帶薄膜的電阻。不同的氣體產生不同的電阻特征,幫助傳感器在它們之間進行區分。
內布拉斯加州材料與納米科學中心的一名成員Sinitskii表示,“一張芯片上有多個傳感器,我們能夠證明我們可以區分具有幾乎相同化學性質的分子。例證如下,我們可以區分甲醇和乙醇,因此這些基于石墨烯納米帶的傳感器不僅具有敏感性,還具有選擇性。”
這張圖片呈現了氣體分子如何擴大團隊石墨烯納米帶行與行之間的間隙。內布拉斯加州材料與納米科學中心的AlexanderSinitskii及其同事已經提出這種現象部分地解釋了納米帶如何為傳感器提供前所未有的靈敏度
Sinitskii和他的同事懷疑納米帶的顯著性能部分來源于納米帶和氣體分子之間非同尋常的相互作用。不同于他們的前輩,該團隊的納米帶排列整齊,類似于查理布朗的條紋襯衫般垂直放置,而不是平躺在表面。該團隊指出,氣體分子可以將這些行列分開,有效地延長了納米帶之間的間隙,幫助電子跳躍到導電區。
加入(苯)環
石墨烯中2004年被發現,并最終獲得諾貝爾獎,其擁有無與倫比的導電性。但是該材料缺乏帶隙,電子從原子周圍的軌道跳躍到驅動電導率的外部“導帶”之前需要獲取能量,最初階段石墨烯因其電導率過低給研究人員帶來了不少阻礙。相應地,對石墨烯應用在需要任意調節材料電導率的電子學領域也提出了挑戰。
一個潛在的解決方案是將石墨烯修剪為納米帶,通過計算機模擬出難以擁有的帶隙。上述方案通過實驗被證明是具有難度的,為了保留石墨烯吸引人的特性,會對原子精度有要求,因此研究人員開始自下而上制備納米帶,戰略性地將分子聚合到某種類型的固體表面上。雖然這一過程解決了問題,而且由此產生的納米帶確實有了帶隙,但是研究人員一次制成的納米帶數量有限。
2014年,Sinitskii開創了一種液體解決方案,可以大批量生產納米帶,這是擴大該技術應用于電子領域的關鍵一步。但是用這些納米帶制成的薄膜導電性不足,無法進行電氣測量。
該團隊的最新研究采用了最原始的化學方法,在第一代納米帶的任意一側加入苯環(具有六個碳原子和氫原子的環狀分子)。這些圓環加寬了納米帶,減小了帶隙,并提高了導電能力。
Sinitskii說道,“人們通常不會想到把石墨烯納米帶用作傳感器材料,然而,相同(性質)使得納米帶對諸如晶體管這類的器件有好處,將其導電率提高幾個數量級也對傳感器有好處。”
“未來有可能會設計出許多不同種類,又具有不同特性的石墨烯納米帶。目前只有幾種類型的納米帶已經通過實驗驗證,但是化學家對尚未合成的納米帶有許多有趣的理論推測。因此,不久的將來研究人員有望開發出具有更佳特性的新型納米帶,伴隨更好的傳感器特性來到大家面前。”
團隊開發了一種由石墨烯制成的新型納米帶,這是一個由碳原子構成的2D蜂巢。當研究人員將納米帶薄膜集成到氣體 傳感器 的電路中去時,與過去的傳感器,甚至是最佳性能的碳基材料相比,它對分子的響應靈敏度高出了100倍。
內布拉斯加大學林肯分校化學系的副教授Alexander Sinitskii表示,“我們以前也研究過其它碳基材料傳感器,如石墨烯和氧化石墨烯。使用石墨烯納米帶,我們確定可以看到傳感器的響應,但是我們沒有預想到會比過去所看到的更高。”
研究人員在《自然通訊》(Nature Communications)雜志上發表了研究結果,顯示氣體分子可以顯著改變納米帶薄膜的電阻。不同的氣體產生不同的電阻特征,幫助傳感器在它們之間進行區分。
內布拉斯加州材料與納米科學中心的一名成員Sinitskii表示,“一張芯片上有多個傳感器,我們能夠證明我們可以區分具有幾乎相同化學性質的分子。例證如下,我們可以區分甲醇和乙醇,因此這些基于石墨烯納米帶的傳感器不僅具有敏感性,還具有選擇性。”
這張圖片呈現了氣體分子如何擴大團隊石墨烯納米帶行與行之間的間隙。內布拉斯加州材料與納米科學中心的AlexanderSinitskii及其同事已經提出這種現象部分地解釋了納米帶如何為傳感器提供前所未有的靈敏度
Sinitskii和他的同事懷疑納米帶的顯著性能部分來源于納米帶和氣體分子之間非同尋常的相互作用。不同于他們的前輩,該團隊的納米帶排列整齊,類似于查理布朗的條紋襯衫般垂直放置,而不是平躺在表面。該團隊指出,氣體分子可以將這些行列分開,有效地延長了納米帶之間的間隙,幫助電子跳躍到導電區。
加入(苯)環
石墨烯納米帶納米薄膜
石墨烯中2004年被發現,并最終獲得諾貝爾獎,其擁有無與倫比的導電性。但是該材料缺乏帶隙,電子從原子周圍的軌道跳躍到驅動電導率的外部“導帶”之前需要獲取能量,最初階段石墨烯因其電導率過低給研究人員帶來了不少阻礙。相應地,對石墨烯應用在需要任意調節材料電導率的電子學領域也提出了挑戰。
一個潛在的解決方案是將石墨烯修剪為納米帶,通過計算機模擬出難以擁有的帶隙。上述方案通過實驗被證明是具有難度的,為了保留石墨烯吸引人的特性,會對原子精度有要求,因此研究人員開始自下而上制備納米帶,戰略性地將分子聚合到某種類型的固體表面上。雖然這一過程解決了問題,而且由此產生的納米帶確實有了帶隙,但是研究人員一次制成的納米帶數量有限。
2014年,Sinitskii開創了一種液體解決方案,可以大批量生產納米帶,這是擴大該技術應用于電子領域的關鍵一步。但是用這些納米帶制成的薄膜導電性不足,無法進行電氣測量。
該團隊的最新研究采用了最原始的化學方法,在第一代納米帶的任意一側加入苯環(具有六個碳原子和氫原子的環狀分子)。這些圓環加寬了納米帶,減小了帶隙,并提高了導電能力。
Sinitskii說道,“人們通常不會想到把石墨烯納米帶用作傳感器材料,然而,相同(性質)使得納米帶對諸如晶體管這類的器件有好處,將其導電率提高幾個數量級也對傳感器有好處。”
“未來有可能會設計出許多不同種類,又具有不同特性的石墨烯納米帶。目前只有幾種類型的納米帶已經通過實驗驗證,但是化學家對尚未合成的納米帶有許多有趣的理論推測。因此,不久的將來研究人員有望開發出具有更佳特性的新型納米帶,伴隨更好的傳感器特性來到大家面前。”